Brain and spinal tumors

邱琮朗 花蓮慈濟醫院神經醫學科學中心神經 外科

Lecture Outline

- Classification of CNS tumor
- Clinical presentation and management of glioma
- Metastatic brain tumor
- Meningioma
- Metastases of spine
- Primary spinal tumor

Learning Purpose

- Understanding of CNS tumor
- How to evaluate CNS tumor
- Learn to manage brain and spinal tumor

Classification of CNS tumor (WHO)

- Astrocytic tumors
- Oligodendroglial tumors
- Ependymal tumors
- Other neuroepithelial tumors
- Neuronal and mixed neuronal-glial tumors
- Tumors of pineal region
- Embryonal tumors
- Tumors of cranial and paraspinal nerves
- Tumors of meninges
- Mesenchymal tumors
- Primary melanocytic lesions
- Tumors of haematopoietic system
- Germ cell tumors
- Tumor of sellar region

Grading of Gliomas

 TABLE 1. Comparison of the St. Anne–Mayo Grading Scheme With the Adaptation of the WHO

			St. Anne–Mayo	
WHO Grade	WHO Designation	Designation	Discriminating Histological Criteria	
Ι	Pilocytic astrocytoma			
II	Diffuse astrocytoma	Astrocytoma grade 2	1 criterion: usually nuclear atypia	
III	Anaplastic astrocytoma	Astrocytoma grade 3	2 criteria: usually nuclear atypia and mitoses	
IV	Glioblastoma	Astrocytoma grade 4	3 criteria: nuclear atypia, mitoses, MVP and/or necrosis	

WHO, World Health Organization; MVP, microvascular proliferation.

	WHO 1979	WHO 1993	WHO 2000/2007
Cellularity	+	+	(+)
Cellular pleomorphism	+	+	
Nuclear pleomorphism			+
Loss of cellular differentiation	+		
Presence of giant cells	+		
Mitoses	+	+	+
Microvascular proliferation	+	_	—
Necrosis	+	_	—

+, present or high; -, absent or low.

WHO, World Health Organization Classification System.

The 2007 WHO Classification of Tumours of the Central Nervous System

Neuronal and mixed neuronal-glial tumours

9493/0

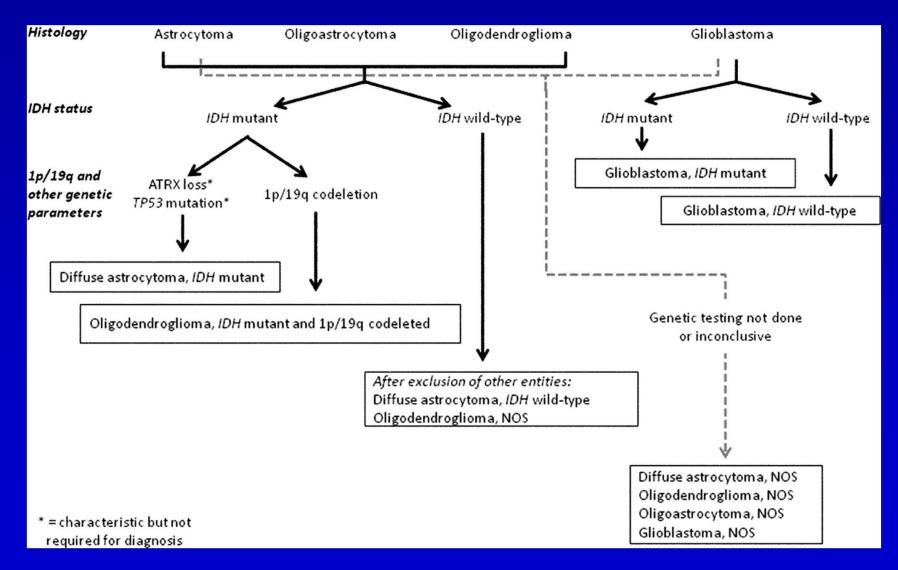
Dysplastic gangliocytoma of cerebellum

(Lhermitte-Duclos)

TUMOURS OF NEUROEPITHELIAL TISSUE

Astrocytic tumours

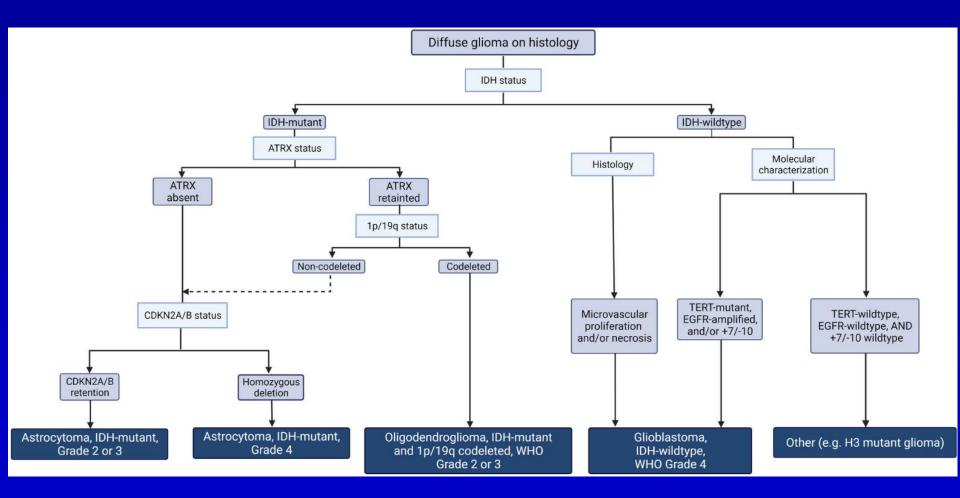
		(Enermitte-Ducios)	3430/0
Pilocytic astrocytoma	9421/1 ¹	Desmoplastic infantile astrocytoma/	
Pilomyxoid astrocytoma	9425/3*	ganglioglioma	9412/1
Subependymal giant cell astrocytoma	9384/1	Dysembryoplastic neuroepithelial tumour	9413/0
Pleomorphic xanthoastrocytoma	9424/3	Gangliocytoma	9492/0
Diffuse astrocytoma	9400/3	Ganglioglioma	9505/1
Fibrillary astrocytoma	9420/3	Anaplastic ganglioglioma	9505/3
Gemistocytic astrocytoma	9411/3	Central neurocytoma	9506/1
Protoplasmic astrocytoma	9410/3	Extraventricular neurocytoma	<i>9506/1</i> *
Anaplastic astrocytoma	9401/3	Cerebellar liponeurocytoma	<i>9506/1*</i>
Glioblastoma	9440/3	Papillary glioneuronal tumour	9509/1*
Giant cell glioblastoma	9441/3	Rosette-forming glioneuronal tumour	
Gliosarcoma	9442/3	of the fourth ventricle	<i>9509/1*</i>
Gliomatosis cerebri	9381/3	Paraganglioma	8680/1


The 2007 WHO Classification of Tumours

of the Central Nervous System

Oligodendroglial tumours		Tumours of the pineal region	
Oligodendroglioma	9450/3	Pineocytoma	9361/1
Anaplastic oligodendroglioma	9451/3	Pineal parenchymal tumour of	
		intermediate differentiation	9362/3
Oligoastrocytic tumours		Pineoblastoma	9362/3
Oligoastrocytoma	9382/3	Papillary tumour of the pineal region	9395/3*
Anaplastic oligoastrocytoma	9382/3		
		Embryonal tumours	
Ependymal tumours		Medulloblastoma	9470/3
Subependymoma	9383/1	Desmoplastic/nodular medulloblastoma	9471/3
Myxopapillary ependymoma	9394/1	Medulloblastoma with extensive	
Ependymoma	9391/3	nodularity	9471/3*
Cellular	9391/3	Anaplastic medulloblastoma	9474/3*
Papillary	9393/3	Large cell medulloblastoma	9474/3
Clear cell	9391/3	CNS primitive neuroectodermal tumour	9473/3
Tanycytic	9391/3	CNS Neuroblastoma	9500/3
Anaplastic ependymoma	9392/3	CNS Ganglioneuroblastoma	9490/3
		Medulloepithelioma	9501/3
Choroid plexus tumours		Ependymoblastoma	9392/3
Choroid plexus papilloma	9390/0	Atypical teratoid / rhabdoid tumour	9508/3
Atypical choroid plexus papilloma	9390/1*		
Choroid plexus carcinoma	9390/3		

The 2016 World Health Organization Classification of Tumors


of the Central Nervous System: a summary

The 2021 WHO Classification of Tumors of the Central Nervous System

Gliomas, glioneuronal tumors, and neuronal tumors
Adult-type diffuse gliomas
Astrocytoma, IDH-mutant
Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted
Glioblastoma, IDH-wildtype
Pediatric-type diffuse low-grade gliomas
Diffuse astrocytoma, MYB- or MYBL1-altered
Angiocentric glioma
Polymorphous low-grade neuroepithelial tumor of the young
Diffuse low-grade glioma, MAPK pathway-altered
Pediatric-type diffuse high-grade gliomas
Diffuse midline glioma, H3 K27-altered
Diffuse hemispheric glioma, H3 G34-mutant
Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype
Infant-type hemispheric glioma
Circumscribed astrocytic gliomas
Pilocytic astrocytoma
High-grade astrocytoma with piloid features
Pleomorphic xanthoastrocytoma
Subependymal giant cell astrocytoma
Chordoid glioma
Astroblastoma, MN1-altered

The 2021 WHO Classification of Tumors of the Central Nervous System

NOS (not otherwise specified): used when genetic testing is not done or is inconclusive Oligodendroglioma is diagnosed based on histology of infiltrating glioma together with IDH-mutation AND 1p/19q co-deletion.

Key Diagnostic Genes, Molecules, Pathways, and/or Combinations in Major Primary CNS Tumors

TumorType	Genes/Molecular Profiles Characteristically Altered ^a
Astrocytoma, IDH-mutant	IDH1, IDH2, ATRX, TP53, CDKN2A/B
Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted	IDH1, IDH2, 1p/19q, TERT promoter, CIC, FUBP1, NOTCH1
Glioblastoma, IDH-wildtype	IDH-wildtype, <i>TERT</i> promoter, chromosomes 7/10, <i>EGFR</i>
Diffuse astrocytoma, MYB- or MYBL1-altered	MYB, MYBL1
Angiocentric glioma	MYB
Polymorphous low-grade neuroepithelial tumor of the young	BRAF, FGFR family
Diffuse low-grade glioma, MAPK pathway-altered	FGFR1, BRAF
Diffuse midline glioma, H3 K27-altered	H3 K27, TP53, ACVR1, PDGFRA, EGFR, EZHIP
Diffuse hemispheric glioma, H3 G34-mutant	H3 G34, <i>TP53, ATRX</i>

Low grade glioma

- Gliomas astrocytes, oligodendrocytes, and ependymal cells
- Headache, seizure, neurological deficits
- Grading characteristics: atypia, mitoses, endothelial proliferation, and necrosis
- Adult gliomas approximately 5.4 cases/100,000 population (low grade 10-20 %; 0.8/100,000)
- Children glioma, 2.4 cases/100,000 population (0.6 case/100,000)

Low grade gliomas

- * Surgical resection
- * Observation
- * Radiotherapy
- * Medical Care

Seizures - phenytoin (Dilantin) or carbamazepine (Tegretol)

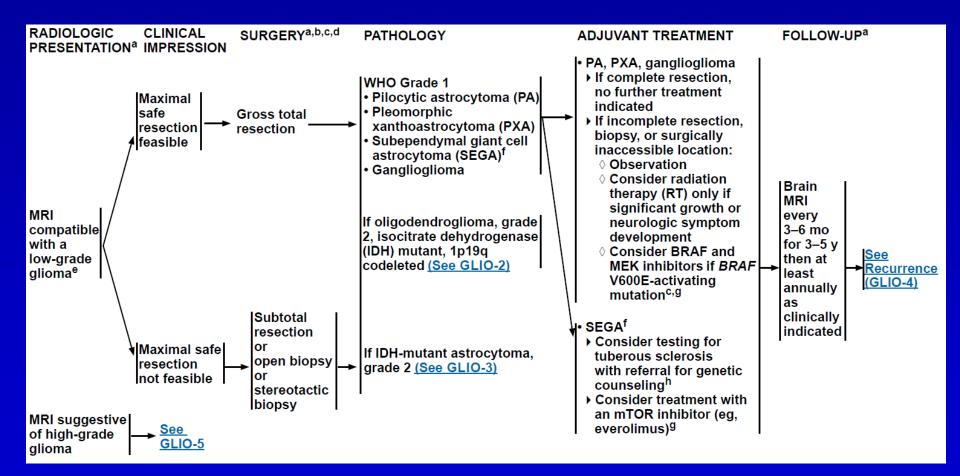
Increasing intracranial pressure, peritumor edema dexamethasone (Decadron, 2-4 mg every 6 hours) H2 blocker

Low grade glioma

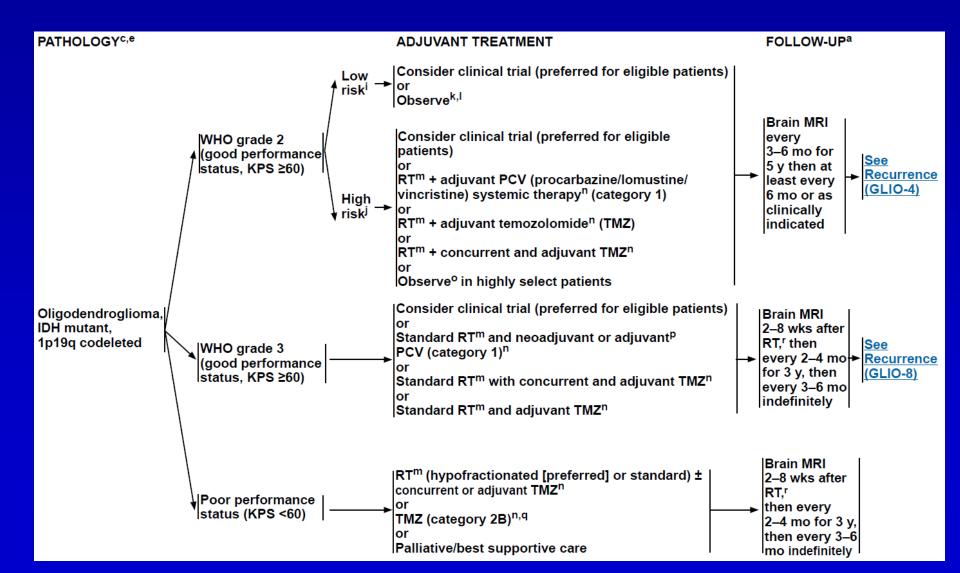
- 5-year survival rate 65-80%;
 10-year survival rate 20-45%
- Male predominance (55%-65%)
- median age 35 years
- Seizure, headache, focal neurological deficits

Malignant Gliomas in Adults

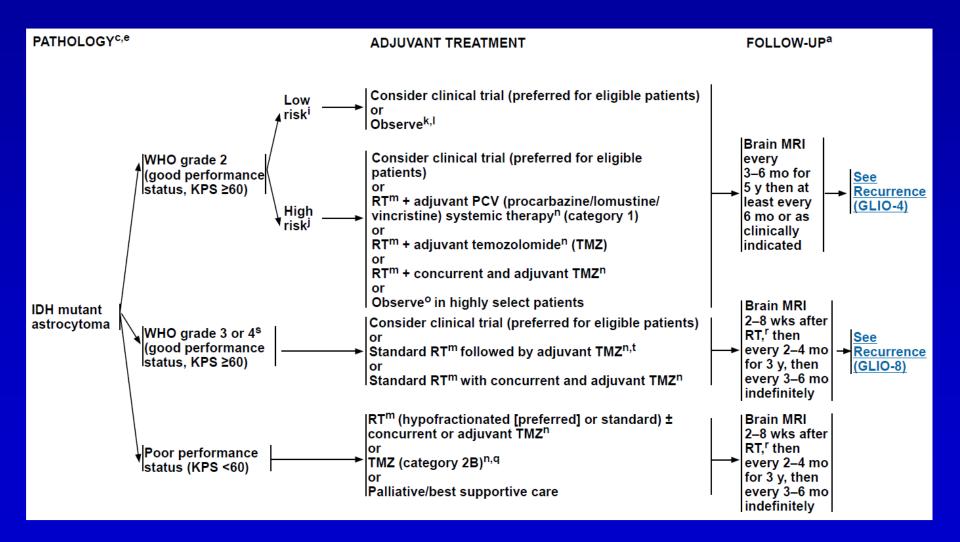
- * Grade III: anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma Grade IV: glioblastoma
- Primary glioblastoma: > 50 y/o Secondary glioblastoma: < 45 y/o
- * Median survival:
 - 12 to 15 months glioblastomas
 - 2 to 5 years anaplastic gliomas

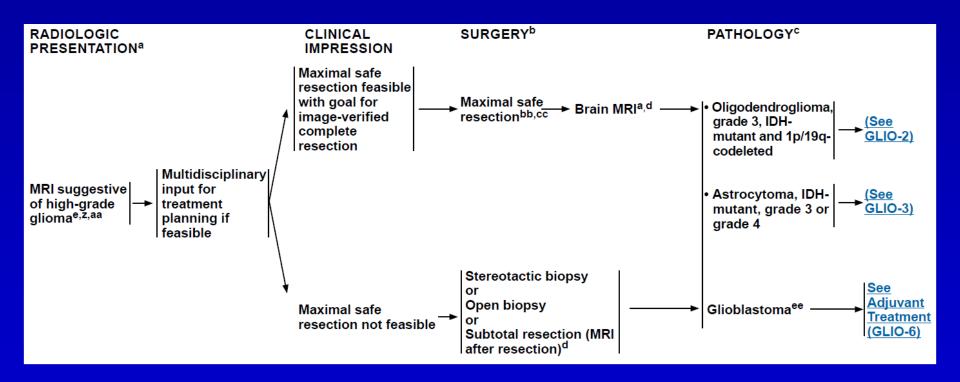

Clinical presentations of Malignant gliomas

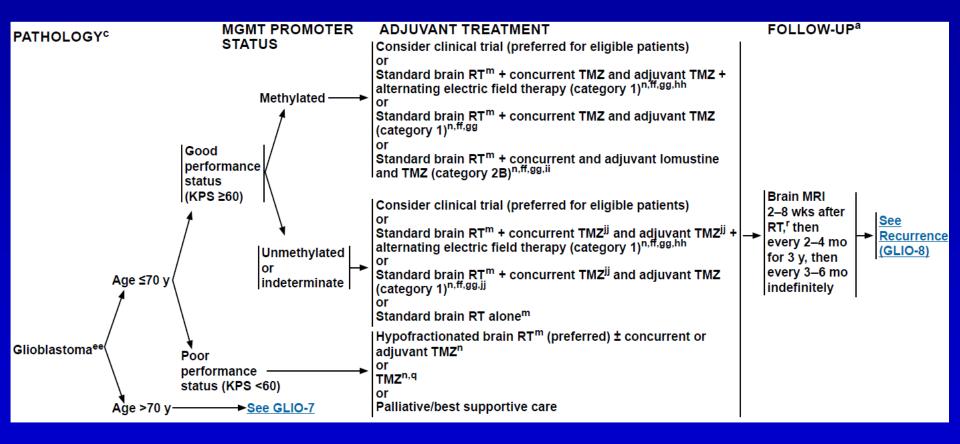
- Headaches (30-50%)
 - increased intracranial pressure
- Seizures (30-60%)
 - simple partial, complex partial, or generalized
- Focal neurologic deficits (40-60%)
 - cognitive problems neurological deficits resulting from radiation necrosis hydrocephalus

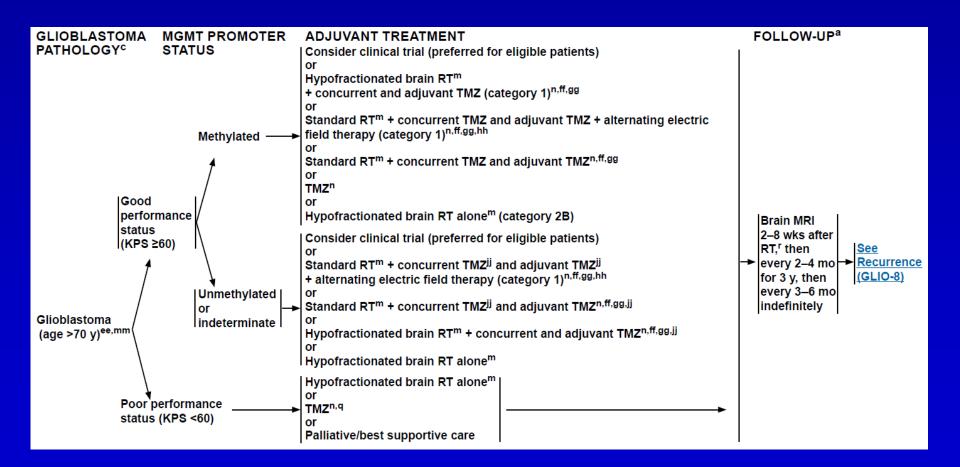

cranial neuropathies and polyradiculopathies from

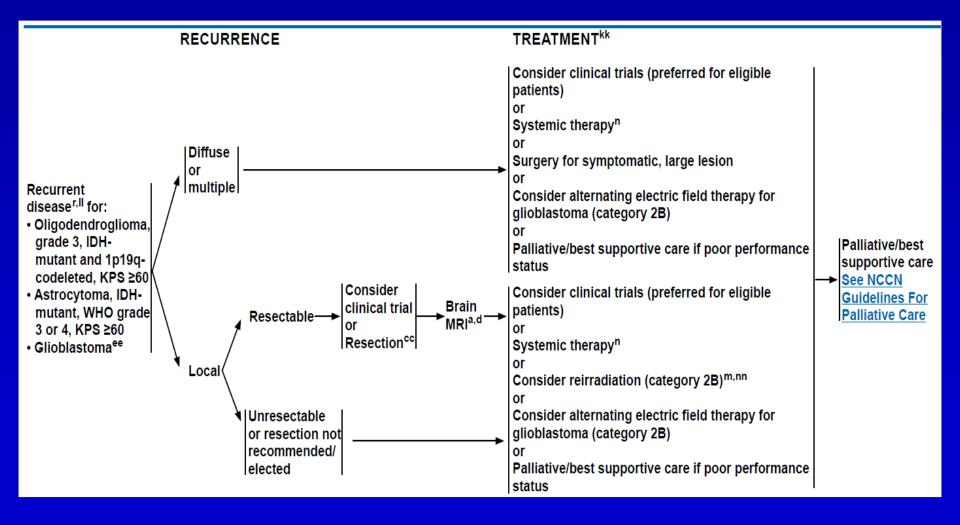
- leptomeningeal spread
- Mental status changes (20-40%) earlier stage with subtle personality changes


NCCN Guidelines Version 2.2022 Adult Glioma: WHO Grade 1


NCCN Guidelines Version 2.2022 Adult Glioma: Oligodendroglioma (IDH mutant, 1p19q codeleted)


NCCN Guidelines Version 2.2022 Adult Glioma: IDH-mutant Astrocytoma


NCCN Guidelines Version 2.2022 Adult Glioma: High-Grade


NCCN Guidelines Version 2.2022 Adult Glioma: Glioblastoma

NCCN Guidelines Version 2.2022 Adult Glioma: Glioblastoma

NCCN Guidelines Version 2.2022 Adult Glioma: High-Grade

Increasing importance of chemotherapy

- * Glioblastoma treated with temozolomide
 - *MGMT* promoter methylation (45% of the total) median survival of 21.7 months; 2-year survival rate of 46%
 - *MGMT* no methylation
 - median survival of 12.7 months; 2-year survival rate
 - of 13.8%
- * Biodegradable polymers containing carmustine (Gliadel Wafers, MGI Pharma)
 - median survival from 11.6 months to 13.9 months (P = 0.03)

Increasing importance of chemotherapy

- * Codeletion of chromosomes 1p and 19q
 - 61 to 89% of anaplastic oligodendrogliomas
 - 14 to 20% of anaplastic oligoastrocytomas
 - PCV procarbazine, lomustine (CCNU), and vincristine
 - response rates of 100%; 3 to 31% among no deletion

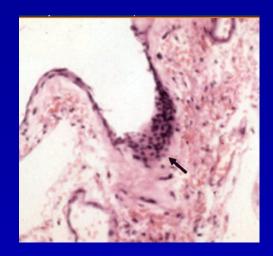
Radiotherapy + PCV increased 10 to 12 months of tumor progression free, did not improve overall survival (median, 3.4 and 4.9 years)

Brain metastasis

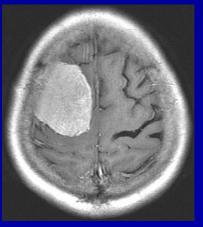
- 120,000-140,000 per year in USA
- 20% of cancer deaths annually
- Over 50% of brain tumor
- 15% present with neurologic symptoms before diagnosis
- 43-60% have an abnormal chest radiograph
- In 9%, the CNS is the only site of spread
- 10% of patients with no identifiable primary source

Brain metastasis

- Lung 48%
- Breast 15%
- Melanoma 9%
- Lymphoma 1% (mainly non-Hodgkin)
- G-I system 3% (3% colon, 2% pancreatic, hepatoma)
- Genitourinary system 11% (21% kidney, 46% testes, 5% cervix, 5% ovary)
- Osteosarcoma 10%
- Neuroblastoma 5%
- Head and neck tumors 6%

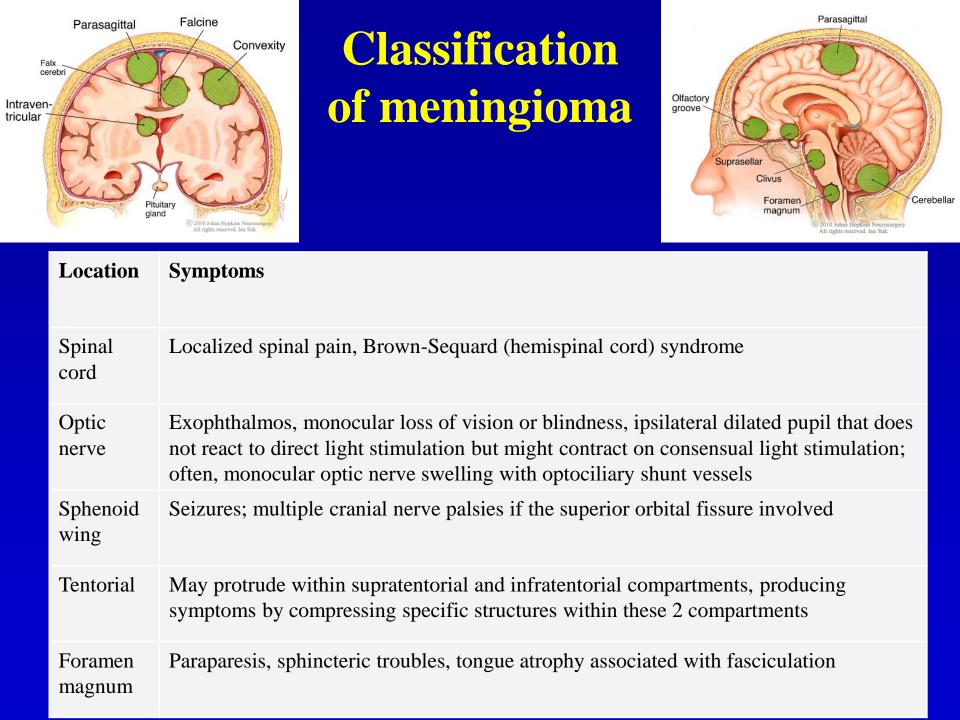

Lung-originated brain metastasis

- Lung cancer patients, survive for more than 2 years, 80% will have brain metastases
- Brain metastases within 4 months
- Small cell carcinomas, 20% of all lung cancers, but 50% of brain metastases


Treatment of brain metastasis

- Surgical treatments
- Medical treatments symptomatic and systematic treatments
- Radiation therapy WBRT; multiplanar fractionated radiation; and stereotactic radiosurgery
- Chemotherapy depends on original tumor
- Integration therapy multidiscipline approach behavioral modification nutritional counseling alternative medicine (herbal) physical and occupational therapy

Meningioma


- Arise from arachnoidal cap cells
- 20% of all primary intracranial neoplasms
- 5-year survival: 73-94%
- Usually grow slowly, may produce severe morbidity before causing death.
- Male-to-female : 1:1.4 to 1:2.8

Classification of meningioma

Location	Symptoms
Parasagittal	Monoparesis of the contralateral leg
Subfrontal	Change in mentation, apathy or disinhibited behavior, urinary incontinence
Olfactory groove	Anosmia with possible ipsilateral optic atrophy and contralateral papilledema (this triad termed Kennedy-Foster syndrome)
Cavernous sinus	Multiple cranial nerve deficits (II, III, IV, V, VI), leading to decreased vision and diplopia with associated facial numbness
Occipital lobe	Contralateral hemianopsia
Cerebellopontine angle	Decreased hearing with possible facial weakness and facial numbness

Grading of meningioma

WHO Grade	Histological Subtype	Histological Features
Ι	Meningothelial fibroblastic transitional angiomatous microcystic secretory lymphoplasmacytic metaplastic psammomatous	Does not fulfill criteria for grade II or III
II (Atypical)	Chordoid Clear cell	4 or more mitotic cells per 10 hpf and/or 3 or more of the following: increased cellularity, small cells, necrosis, prominent nucleoli, sheeting, and/or brain invasion in an otherwise Grade I tumor
III (Anaplastic)	Papillary Rhabdoid	20 or more mitoses per 10 hpf and/or obviously malignant cytological characteristics such that tumor cell resembles carcinoma, sarcoma, or melanoma

Treatment of meningioma

- Surgical principle
 - All involved or hyperostotic bone, free of dura rim
- Radiotherapy (adjuvant therapy)
 - incomplete resection
 - high-grade
 - recurrent
- Stereotactic radiosurgery
 - high risk of surgery small (<3 cm in diameter) residual
 - recurrent lesions
 - small meningiomas
 - skull base
 - cavernous sinus

Spinal metastasis

- Common sites for cancer metastasis lung, liver, spine
- Systemic cancer 60-70% spinal metastasis
- Epidural and/or vertebral involvement 94-98%
- Intradural extramedullary 5-6%
- Intramedullary 0.5-1%
- Thoracic 70%, T4-T7
- Lumbar 20%
- Cervical 10%
- Multiple levels 50%

Spinal metastasis

- Lung 31%
- Breast 24%
- GI tract 9%
- Prostate 8%
- Lymphoma 6%
- Melanoma 4%
- Unknown 2%
- Kidney 1%
- Others including multiple myeloma 13%

Clinical presentations of spinal metastasis

- * Median survival 10 months
- * Paralysis and/or bowel and bladder involvement
- * Cord compression preterminal event median survival 3 months
- * Initial presentation
 - 90%, bone and/or back pain followed by radicular pain.
 - 50%, sensory and motor dysfunction
 - more than 50%, bowel and bladder dysfunctions

* 5-10% of patients initiated with cord compression

Management of spinal metastasis

- No treatment has been proven to increase the life expectancy.
- Therapeutic goals pain control and functional preservation
- Bone pain bony destruction or pathologic fractures
- Local pain stretching of the periosteum, respond to irradiation

Management of spinal metastasis

- Axial pain vertebral compression and/or collapse, mechanical instability
- Neuropathic pain root irritation and/or meningeal irritation secondary to cancer infiltration
- Steroids and nonsteroidal anti-inflammatory drugs (NSAIDs) for bone pain

Steroid for spinal metastasis

* Dexamethasone 10 mg then 4 mg every 6 hours Least mineralocorticoid effects Least likely to be associated with infection or cognitive dysfunction Increase the risk of myopathy * Adverse effects: psychotic reaction (5%) GI bleeding (<1%) glucose intolerance (19%) * More than 3 weeks - associated with complications * Hypoalbuminemia increases the risks

Steroid for spinal metastasis

- * 70-80%, symptoms improve within 48 hours of treatment
- $* \sim 64\%$, alleviation of pain within 24-48 hours
- * 57% improvement in motor function
- * Most patients continued until radiotherapy is completed.

Treatment of spinal metastasis

• Radiation therapy –

67% pain control

17% further deterioration of mobility or sphincter control

• Surgery –

36% pain controlsurgery alone is the least effective20-26% further deterioration of mobility or sphinctercontrol

Radiotherapy for spinal metastasis

* Radiosensitive tumors – lymphoma, neuroblastoma, seminoma, myeloma * Relative insensitivity of radiotherapy – prostate carcinoma, lung and breast * Resistant to radiotherapy – tumors of the GI system, kidney, melanomas * The common regimen is 30 Gy in 10 fractions * Stereotactic radiosurgery

Spinal cord tumors

- Epidural, intradural extramedullary, and intradural intramedullary
- Primary spinal tumors intradural
- Metastatic spinal tumors extradural
- Intramedullary neoplasms astrocytomas ependymomas (60-70%) hemangioblastomas
- Astrocytomas and ependymomas neurofibromatosis type 2, abnormal chromosome 22
- Hemangioblastomas 30% of patients with von Hippel-Lindau syndrome, abnormal chromosome 3

Treatment of spinal cord tumors

*Surgical therapy
*Standard fractionated radiation is used for astrocytomas of residual and recurrent neoplasm.
*Stereotactic spinal radiosurgery may be helpful for treating these lesions.
*Chemotherapeutic regimens have limited success.

Further study

- Pituitary adenoma
- Craniopharyngioma
- Germ cell tumor
- Medulloblastoma

References

- * Youmans Neurological Surgery, 6th Edition
- * Brain Tumors An encyclepedic Approach, 3rd Edition
- * National Comprehensive Cancer Network http://www.nccn.org/index.asp
- * American Joint Committee on Cancer http://www.cancerstaging.org/
- * Acta Neuropathol (2007) 114:97–109
- * Neuro Oncol. 2021 Aug 2;23(8):1231-1251.
- * Presse Med. 2018 Nov-Dec;47(11-12 Pt 2):e187-e200.
- * NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)
- *國家衛生研究院 腦瘤之診斷與治療共識

1. 轉移性脊椎腫瘤最常在何處發生?

- a. 頸椎
- b. 胸椎
- c. 腰椎
- d. 薦椎

2. 最容易轉移到腦的腫瘤為下列何者?
a. 肝癌
b. 大腸癌
c. 淋巴癌
d. 肺癌

3. Glioblastoma的治療應包括下列何者?
a. Radiotherapy
b. Surgical excision
c. Chemotherpy with temozolamide
d. 以上皆是

4. Meningiomam源自於何種細胞?
a. arachnoidal cap cell
b. endothelial cell of dura matter
c. epithelial cell of dura mater
d. fibroblast cell of leptomeninges